Biotoxin Removers: Clay & Zeolite Research

This page contains educational material about the use of clay and zeolite in removal of biotoxins from the body. This information is for educational purposes only. Nothing in this text is intended to serve as medical advice. All medical decisions should be made only with the guidance of your own personal medical authority. I am doing my best to get this data up quickly and correctly. If you find errors in this data, please let me know.

Home Page | Wise Acres Farm | Classes
Herbal Reference | Book Store | Links | Contact Information

Biotoxin/Mold

 

I personally have some concerns about the internal use of clay due to the high aluminum content but I share this data below with you for its educational content. There are people using clay as a mycotoxin binder who get results while others feel it does not work as well as other binders and still others who feel it is worthless. It does seem to be useful clinically but I still have concern about the aluminum content and prolonged use of clay internally. There is one article looking at the use of clay to remove Zearalenone metabolites from the enterohepatic circulation. This is as study in pigs. It can be found here.

In the 1980s, using multiple animal models and molecular assessment of sorption mechanisms, Phillips et al. (1988, 1995, 2002, 2008) reported that a calcium dioctahedral smectite clay (NovaSil, NS) significantly prevented the adverse effects of aflatoxin (AF) in animals via enterosorption in the gastrointestinal system and a resulting decrease in toxin bioavailability. Clinical intervention studies indicate that refined NS can significantly reduce biomarkers of exposure for AFB1 as well as FB1 (Phillips et al., 2008; Robinson et al., 2012, Mitchell et al., 2014). The molecular mechanism for sorption of AF onto the surfaces of NS is thought to involve chemisorption of toxin onto interlamellar surfaces of the clay with the planar orientation of the AF molecule as the most stable configuration. The results also indicate a good correlation between the magnitude of partial positive charges on carbons C11 and C1 of the β-dicarbonyl system and the strength of adsorption of planar ligands. Other potential mechanisms of AFB1 sorption to NS surfaces may involve the chelation of interlayer cations (especially Ca2+) and various edge-site metals and/or the interaction with water molecules in the interlayer (Grant and Phillips, 1998; Phillips, 1999; Deng et al., 2010). NovaSil is a processed calcium montmorillonite clay. Its discovery as a high affinity and high capacity enterosorbent for AF, its chemical composition, and its sorption mechanism of AF at interlayer surfaces have been described in numerous publications in the scientific literature (Phillips et al., 2008; Robinson et al., 2012, Mitchell et al., 2014). NovaSil contains more calcium than sodium and swells less than sodium clay, hence it has restricted delamination upon hydration. This is thought to be one of the reasons for the preferential sorption of compounds such as AF. Recent studies have confirmed the ability of AF to be tightly adsorbed onto “dioctahedral smectite” clay surfaces (Phillips et al., 2002; Kannewischer et al., 2006; Marroquín-Cardona et al., 2009; Deng et al., 2010). This is not the case for other clay groups, such as kaolinites, attapulgites, zeolites, mica, alumina, and sand. (Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counterating strategies, G. R. Murugesan et al, Poultry Science, 8/31/2014

There are many choices for clay and zeolite use. A friend of mine searched for a zeolite that did not have toxins in it and she found one called ZeoForce. You can find it here: https://healthforce.com/education/white-papers/zeoforce

 

This article is about tight junctions and zonulin reactions to zeolite

J Int Soc Sports Nutr. 2015 Oct 20;12:40. doi: 10.1186/s12970-015-0101-z. eCollection 2015.
Effects of zeolite supplementation on parameters of intestinal barrier integrity, inflammation, redoxbiology and performance in aerobically trained subjects.
Lamprecht M1, Bogner S2, Steinbauer K3, Schuetz B4, Greilberger JF5, Leber B6, Wagner B7, Zinser E7, Petek T8, Wallner-Liebmann S9, Oberwinkler T10, Bachl N11, Schippinger G3.

Abstract
BACKGROUND:
Zeolites are crystalline compounds with microporous structures of Si-tetrahedrons. In the gut, these silicates could act as adsorbents, ion-exchangers, catalysts, detergents or anti-diarrheic agents. This study evaluated whether zeolite supplementation affects biomarkers of intestinal wall permeability and parameters of oxidation and inflammation in aerobically trained individuals, and whether it could improve their performance.
METHODS:
In a randomized, double-blinded, placebo controlled trial, 52 endurance trained men and women, similar in body fat, non-smokers, 20-50 years, received 1.85 g of zeolite per day for 12 weeks. Stool samples for determination of intestinal wall integrity biomarkers were collected. From blood, markers of redox biology, inflammation, and DNA damage were determined at the beginning and the end of the study. In addition, VO2max and maximum performance were evaluated at baseline and after 12 weeks of treatment. For statistical analyses a 2-factor ANOVA was used.
RESULTS:
At baseline both groups showed slightly increased stool zonulin concentrations above normal. After 12 weeks with zeolite zonulin was significantly (p < 0.05) decreased in the supplemented group. IL-10 increased tendentially (p < 0.1) in the zeolite group. There were no significant changes observed in the other measured parameters.
CONCLUSIONS:
Twelve weeks of zeolite supplementation exerted beneficial effects on intestinal wall integrity as indicated via decreased concentrations of the tight junction modulator zonulin. This was accompanied by mild anti-inflammatory effects in this cohort of aerobically trained subjects. Further research is needed to explore mechanistic explanations for the observations in this study.
Free PMC Article

Mycopathologia. 2012 Sep;174(3):247-54. doi: 10.1007/s11046-012-9534-y. Epub 2012 Mar 7.
Evaluation of pathological effects in broilers during fumonisins and clays exposure.
Vizcarra-Olvera JE1, Astiazarán-García H, Burgos-Hernández A, Parra-Vergara NV, Cinco-Moroyoqui FJ, Sánchez-Mariñez RI, Quintana-Obregón EA, Cortez-Rocha MO.

Abstract
This study was conducted to evaluate the possible protector effect of bentonite and zeolite in Bovans chicks fed a diet containing 59 mg kg(-1) of fumonisin B1 (FB1) during 3 weeks. A total of 200 one-day-old male chicks were treated varying the amount of bentonite and zeolite. Chick weight was registered weekly. At the end of the experiment, all the chicks were killed, and the livers were analyzed for gross examination and histopathological changes. Plasmatic activity of alanine amino transferase and aspartate amino transferase (AST) were also determined. Sphinganine and the sphinganine-to-sphingosine ratio in serum were evaluated. Both, bentonite and zeolite showed a protector effect against FB1 adsorption in the digestive tract of chicks. Chicks fed with FB1-contaminated feed, amended either with zeolite or bentonite, were heavier, and no macroscopic lesions were observed in the livers. AST activity might be considered as an indicator for FB1 exposition because AST levels were affected when only FB1 was present in the basal diet. These results indicate that both, zeolite and bentonite can be added into feed to diminish the effects of FB1.

Mycotoxin Res. 2008 Sep;24(3):124-9. doi: 10.1007/BF03032338.
In vitro evaluation of the capacity of zeolite and bentonite to adsorb aflatoxin B1 in simulated gastrointestinal fluids.

Thieu NQ1, Pettersson H.

Abstract
Anin vitro study using single concentration and isotherm adsorption was carried out to evaluate the capacity of Vietnamese produced zeolite and bentonite to adsorb aflatoxin B1 (AFB1) in simulated gastrointestinal fluids (SGFs), and a commercial sorbent hydrated sodium calcium aluminosilicate (HSCAS) was used as reference. In this study, AFB1 solution was mixed with sorbents (0.3, 0.4 and 0.5% w/v) in SGFs at pH 3 and pH 7 and shaken for 8 h, centrifuged and the supernatant measured by Vicam fluorometer. Adsorption of AFB1 onto zeolite and bentonite varied according to the pH of SGFs and was lower than HSCAS. Linearity between the increased amount of AFB1 adsorbed on sorbents and the decrease of sorbent concentration was observed for bentonite and HSCAS, except for zeolite in SGFs at pH 7. The observed maximum amounts of AFB1 adsorbed on bentonite and HSCAS were 1.54 and 1.56 mg/g, respectively. The adsorption capacities of bentonite and HSCAS for AFB1 were 12.7 and 13.1 mg/g, respectively, from fitting the data to the Freundlich isotherm equation. Improvement in processing and purification for bentonite is needed to enhance the surface area, which would probably result in better adsorptive capacity for this sorbent.

Can J Physiol Pharmacol. 1980 Nov;58(11):1251-5.
Effect of dietary protein, alfalfa, and zeolite on excretory patterns of 5',5',7',7'-[3H]zearalenone in rats.

Smith TK.
Abstract
A series of experiments was conducted to determine how dietary protein, alfalfa, or zeolite influence the excretory patterns of zearalenone (Z), a uterotropic mycotoxin synthesized by Fusarium fungi. Rats were fed diets containing 16.3% casein, 40% casein, 11.2% casein + 25% alfalfa, or 25% casein + 25% alfalfa. Also fed were diets containing 0, 1, 2, or 5% anion exchange zeolite. Tracer doses of [3H]Z were administered either as a constituent of the diet or as a topical application on the skin at the base of the skull. When Z was administered orally, no differences were seen in the fraction of the dose excreted in urine or feces as a result of varying dietary levels of alfalfa and protein. Topical doses resulted in rats fed 25% casein + 25% alfalfa or 40% casein excreting more Z in urine than those fed 25% alfalfa or 16.3% casein. Fecal excretion of Z was greatest for rats fed 25% casein + 25% alfalfa whereas rats fed 40% casein excreted more fecal Z than those fed 16.3% casein. Feeding Z to rats receiving dietary zeolite resulted in a positive correlation between dietary zeolite and fecal excretion of Z but a negative correlation with urinary excretion of Z. Topical administration of Z produced a positive correlation between dietary zeolite and fecal Z excretion but no effect on urinary excretion. It may be concluded that protein and alfalfa treatments alleviate Z toxicosis through increased metabolism whereas zeolite binds Z in the digestive tract to prevent absorption.

Aluminum in zeolite absorbed by hens
This is something I have always been concerned about with all alumno-silicilate clays. I talked to a lot of "experts" in the US about this 15 years ago. More recently found evidence it probably was absorbed to some degree.

Poultry Sci. 1993 Mar;72(3):447-55.
Evidence for absorption of silicon and aluminum by hens fed sodium zeolite A.
Roland DA Sr1, Rabon HW JrRao KSSmith RCMiller JWBarnes DGLaurent SM.
Author information

Abstract
The mechanism of action of zeolite A (ZA) on eggshell quality could be related either to its ion-exchange properties or to individual ZA elements (Al or Si). Two experiments were conducted to determine 1) whether any ZA passes through the digestive system in its original form; and 2) whether any Al and Si absorption occurs. In Experiment 1, unfed hens were intubated with either 0 or 5 g ZA at oviposition. In Experiment 2, fed and unfed hens were intubated at oviposition with 0, 1, or 2 g ZA. At the subsequent oviposition, liver and kidney tissues, excreta, urine, bile, and plasma were collected and analyzed for Al, Si, Na, K, and P. The results indicated that approximately 7% of the intubated ZA passed through the digestive system in its original form (Experiment 1). As the intubated level of ZA increased, excreta Al and Si (P < .0001), urine Si (P < .005), and urine Al (P < .07) also increased (Experiment 2). Aluminum recovery from excreta ranged from 75 to 93% of the quantity intubated in all treatments. Corresponding values of Si from excreta of unfed and fed hens ranged from 76 to 81% and 58 to 60%, respectively. The P content of excreta was not influenced by ZA. However, excreta P was greater (P < .0001) in unfed than in fed hens. Neither plasma electrolytes (Na, K, and P) nor Al or Si levels in either liver or kidney were influenced by ZA.(ABSTRACT TRUNCATED AT 250 WORDS)

Res Vet Sci 2001 Aug;71(1):59-66.
Ameliorative effects of dietary clinoptilolite on pathological changes in broiler chickens during aflatoxicosis.
Ortatatli M1, Oguz H.

Abstract
The amelioration of aflatoxicosis in broiler chickens was examined by feeding two concentrations of natural zeolite (clinoptilolite). Clinoptilolite (ClI), incorporated into the diet at 1.5 and 2.5 per cent, was evaluated for the ability to reduce the deleterious effects of 2.5 mg total aflatoxin (AF) kg(-1)diet on growing broiler chicks from 1 to 21 days of age. A total of 360 broiler chicks were divided into six treatment groups [Control, AF, CLI (1.5 per cent), AF plus CLI (1.5 per cent), CLI (2.5 per cent), and AF plus CLI (2.5 per cent)] each consisting of 60 chicks. Compared to controls, the AF consuming chicks showed increases in the relative weights of liver and kidney; and gross-histopathologic hepatic lesions such as paleness, friability, diffuse hydropic degeneration and/or fatty change, bile-duct hyperplasia and periportal fibrosis. Glomerular hypertrophy, increases in the number of mesengial cells and hydropic degeneration of tubuler epithelium in kidneys of chicks fed diet AF alone were also observed. Atrophy and lymphoid depletion were seen in the thymuses and bursa of Fabricius from the chicks fed AF alone. The additions of CLI (1.5 and 2.5 per cent) to the AF -containing diet moderately (significantly in some cases) decreased the number of affected broilers and/or the severity of lesions. The addition of CLI to the AF-free diet did not produce any significant changes compared with the controls. These results suggest that CLI was effective for the protection of AF-toxication in broilers and it could contribute to a solution of the AF problem in poultry production.
Copyright 2001 Harcourt Publishers Ltd.

Res Vet Sci. 2005 Feb;78(1):61-8.
Evaluation of pathological changes in broilers during chronic aflatoxin (50 and 100 ppb) and clinoptilolite exposure.
Ortatatli M1, Oguz H, Hatipoglu F, Karaman M.

Abstract
This study was conducted to evaluate the pathological changes in broilers fed a diet containing low-levels of aflatoxin (AF) and clinoptilolite (CLI) until 42 days of age. A total of 576 one-day-old Ross-308 type broiler chicks were treated with varying levels of AF and CLI (15 g kg(-1)). The gross and histopathological changes in the liver, kidneys, spleen, thymus and bursa of Fabricius were investigated and relative organ weights were calculated. Compared to controls, significant changes (P<0.05), such as slight to moderate hydropic degeneration and/or fatty change (8 cases of 10), bile-duct hyperplasia (7 of 10) and periportal fibrosis (5 of 10), were found in chicks fed 100 ppb AF-containing diet. No gross-pathological changes were observed in any treatments. The addition of CLI to the 100 ppb AF-containing diet significantly decreased the number of affected broilers and/or the severity of lesions (hydropic degeneration and bile-duct hyperplasia) in the livers (P<0.05). The addition of CLI to the AF-free diet did not produce any significant lesions compared with the controls.

 

Br Poult Sci. 2013;54(4):515-23. doi: 10.1080/00071668.2013.798627. Epub 2013 Jul 2.
In vitro and in vivo protective effects of three mycotoxin adsorbents against ochratoxin A in broiler chickens.
Trailovig JN1, Stefanovig S, Trailovig SM.

Abstract

  1. The objective of this study was to investigate in vitro and in vivo (in broiler chickens) ochratoxin A (OTA) adsorption efficiency of three different adsorbents: inorganic (modified zeolite); organic (esterified glucomannans) and mixed (inorganic and organic components plus enzymes). 2. The aim of the study was to investigate which of these adsorbents provided the best protection against the presence of residues of OTA in the pectoral muscle and liver of broilers given an OTA-contaminated diet. In addition, it was important to test and compare the results of adsorbent efficiency using two different in vitro methods. 3. The results from classical in vitro investigations carried out in the artificial intestinal fluid, showed that the inorganic adsorbent (Mz), exhibited the highest adsorption, having adsorbed 80.86 ± 1.85% of OTA, whereas average in vitro adsorption abilities of organic (30.52 ± 3.50%) and mixed (32.00 ± 2.60%) adsorbents were significantly lower. 4. In the investigation of absorption in everted sacs of broiler duodenal segments (Everted Duodenal Sacs Procedure), higher OTA adsorption in gut was exhibited by organic adsorbent, 74.26 ± 4.48%. Furthermore, the mean adsorption efficiency of mixed and inorganic adsorbent was 65.26 ± 4.76% and 45.75 ± 7.14%, respectively. 5. In the in vivo investigation, broilers were fed for 21 d on diets containing 2 mg/kg of OTA and supplemented with inorganic (Mz), organic (Ms) or mixed adsorbent (Mf) at the recommended concentration of 2 g/kg of feed. All three adsorbents significantly decreased OTA residue concentrations in the pectoral muscle and livers, but the order of effectiveness was mixed > organic > inorganic. The most efficient was the mixed adsorbent which decreased residue concentration by 72.50% in pectoral muscle and 94.47% in livers. 6. The Everted Duodenal Sac in vitro method provided results similar to those obtained in the in vivo study. However, further studies are required to investigate the efficiencies of adsorbents against various mycotoxins using this method.

Mycopathologia. 2001;151(3):147-53.
In vitro and in vivo studies to assess the effectiveness of cholestyramine as a binding agent for fumonisins.

Solfrizzo M1, Visconti A, Avantaggiato G, Torres A, Chulze S.

Abstract
Several adsorbent materials were tested at I mg/ml for their in vitro capacity to adsorb fumonisin B1(FB1) from aqueous solutions. Cholestyramine showed the best adsorption capacity (85% from a solution containing 200 microg/ml FB1) followed by activated carbon (62% FB1). Bentonite adsorbed only 12% of the toxin from a solution containing 13 microg/ml FB1, while celite was not effective even at the lowest tested FB1 concentration (3.2 microg/ml). Cholestyramine was tested in vivo to evaluate its capacity to reduce the bioavailability of fumonisins (FBs) in rats fed diet contaminated with toxigenic Fusarium verticillioides culture material. Rats were exposed for one week to FBs-free diet, FBs-contaminated diet containing 6 or 20 microg/g FB1 + FB2 and the same FBs-contaminated diet added of 20 mg/g cholestyramine. The increase of sphinganine/sphingosine (SA/SO) ratio in urine and kidney of treated rats was used as specific and sensitive biomarker of fumonisin exposure. The addition of cholestyramine to the FBs-contaminated diets consistently reduced the effect of FBs by reducing significantly (P < 0.05) both urinary and renal SA/SO ratios.

For more on different types of Biotoxin Removers.

 

If you found this information helpful, I would appreciate your support in keeping the site going. If you would like to donate to my work, I thank you in advance and send you my deep felt gratitude.

 


Copyright 2014 by Wise Acres, LLC - all rights reserved.